Mechanically stiffened and thermally softened Raman modes of ZnO crystal.
نویسندگان
چکیده
An analytical form connecting the energy shift of Raman modes directly to the bonding identities (order, nature, length, energy) of a specimen and the response of the bonding identities to the applied stimuli of temperature and pressure was presented for a deeper understanding of the atomistic origin of the ZnO Raman shift. Theoretical reproduction based on the BOLS correlation theory [Sun, C. Q. Prog. Solid State Chem. 2007, 35, 1] and the local bond average (LBA) approach [Sun, C. Q. Prog. Mater. Sci. 2009, 54, 179] of the measurements revealed that the thermally softened ZnO Raman modes arise from bond expansion and bond weakening due to vibration and that the pressure-stiffened Raman modes result from bond compression and bond strengthening due to mechanical work hardening. The developed approach could be useful in generalizing the lattice dynamics directly to the process of vibration and relaxation of a representative bond of the specimen under external stimuli.
منابع مشابه
Electronic and Optical Properties of Size-Controlled ZnO Nanoparticles Synthesized by a Facile Chemical Approach
Facile low-temperature chemical route for the synthesis of ZnO nanoparticles is reported in this paper. Morphologically uniform and spherical shape with an average particle size of 8.8 nm and wurtzite phase with the crystalline structure of as-synthesized ZnO nanoparticles were confirmed by X-Ray Diffraction (XRD), Scanning Electron Microscopy (SEM) and Transmissi...
متن کاملPolar optical phonons in wurtzite spheroidal quantum dots: theory and application to ZnO and ZnO/MgZnO nanostructures
Polar optical-phonon modes are derived analytically for spheroidal quantum dots with wurtzite crystal structure. The developed theory is applied to freestanding spheroidal ZnO quantum dots and to spheroidal ZnO quantum dots embedded into a MgZnO crystal. The wurtzite (anisotropic) quantum dots are shown to have strongly different polar optical-phonon modes in comparison with zincblende (isotrop...
متن کاملInterface and confined polar optical phonons in spherical ZnO quantum dots with wurtzite crystal structure
We derive analytically the interface and confined polar optical-phonon modes for spherical quantum dots with wurtzite crystal structure. While the frequency of confined optical phonons in zincblende nanocrystals is equal to that of the bulk crystal phonons, the confined polar optical phonons in wurtzite nanocrystals are shown to have a discrete spectrum of frequencies different from those in bu...
متن کاملInterface and confined optical phonons in wurtzite nanocrystals
We derive within the dielectric-continuum model an integral equation that defines interface and confined polar optical-phonon modes in nanocrystals with a wurtzite crystal structure. It is demonstrated theoretically that, while the frequency of confined polar optical phonons in zinc-blende nanocrystals is equal to that of the bulk crystal phonons, the confined polar optical phonons in wurtzite ...
متن کاملPlate modes in piezoelectric multilayered structures
2014 Recent experiments have shown that interdigital transducers can couple strongly to plate modes in piezoelectric composite membranes. In this paper the dispersive properties and the piezoelectric coupling (039403BD/03BD) to these plate modes are presented The various types of modes are identified and related to crystalline symmetry. Results are given for stiffened-shear modes in zinc oxide ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The journal of physical chemistry. B
دوره 114 4 شماره
صفحات -
تاریخ انتشار 2010